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Alumina s i z e  d i s t r ibu t ions  were obtained f o r  
both a coarse and a f i n e  oxidizer composite propel- 
l a n t  burning i n  a nitrogen atmosphere over t he  
pressure range from atmospheric t o  500 psi .  The 
amount of addi t ive  agglomeration was found t o  be 
s ign i f i can t ly  higher f o r  t he  coarse oxidizer pro- 
pe l l an t  and decreased with increasing pressure t o  
the  0.3 power over t h e  range from atmospheric pres- 
sure  t o  250 ps i .  

High-speed photographs of t he  burning propel- 
l a n t  surface revealed t h a t  t he  additives moved on 
the  surface with the  average p a r t i c l e  ve loc i ty  de- 
creasing with pressure t o  approximately the  0.3 
power over t he  pressure range from atmospheric t o  
50 ps i .  
ve loc i ty  and pressure was used t o  modify an agglom- 
era t ion  c r i t e r i o n  presented previously. Evaluation 
of t he  c r i t i c a l  aluminum diameter required f o r  ag- 
glomeration ind ica ted  t h a t  both propellant types 
used i n  th i s  study should experience some agglomer- 
a t ion  over t he  pressure range studied. The alumi- 
num s i z e  required f o r  agglomeration was found t o  
increase  with increasing pressure. The experimental 
f indings of the  c r i t i c a l  aluminum diameter required 
f o r  agglomeration were i n  reasonable agreement with 
the  ca lcu la ted  data. 

The empirical r e l a t ion  between p a r t i c l e  

The volume mean diameter of the  alumina was 
found t o  decrease with increasing pressure, and t h e  
da ta  were compared with t h a t  i n  the  l i t e r a t u r e .  

d r H 0  t 
Introduction 

The use  of f i n e  meta l l ic  powders, such as alu- 
minum, continues t o  be one of the  most e f f ec t ive  
and u t i l i z e d  techniques f o r  t he  suppression of com- 
bustion i n s t a b i l i t y  i n  solid-propellant rocket 
engines1 regard less  of t he  f a c t  t h a t  t he  a d l i t i v e  
suppression mechanism is s t i l l  not well i n  hand. 
Recent experiments ind ica ted  t h a t  the  increased 
damping i n  a solid-propellant system due t o  the  ad- 
d i t i o n  of f i n e  meta l l ic  powders could be explained 
by means of a p a r t i c l e  damping theory.2 
t h a t  this r e s u l t  contradicts e a r l i e r  references i n  
the  f i e l d l ~ ~ , ~  serves t o  i l l u s t r a t e  t he  complexity 
of t h e  problem and re inforces  the  opinion t h a t  t he  
coupling mechanism between the  gas-phase osc i l l a -  
t i ons  and t h e  combustion process and the  suppression 
of t h e  osc i l l a t ions  with f i n e  meta l l ic  pa r t i c l e s  
w i l l  not be  completely resolved u n t i l  a more funda- 
mental and de ta i led  understanding of the  metall ic- 
s o l i d  combustion processes is obtained. 

The f a c t  

In order t o  extend our knowledge of the 
meta l l ic -so l id  combustion, it is informative t o  in -  
ves t iga t e  metal addi t ive  behavior during ac tua l  
propel lan t  burning. Although the  combustion of t he  
addi t ive  by i t s e l f  provides us with a grea t  deal of 
information concerning m e t a l  behavior5j6 it is  

necessary t o  study the  metall ic-solid processes i n  
s i t u .  
glomeration on the  burning propellant surface not 
only increased our knowledge of addi t ive  behavior 
bu t  a l s o  provide information applicable t o  damping 
calculations.  It is only by a gradual increase i n  
our l i b r a r y  of f ac t s  t h a t  t he  addi t ive  suppression 
mechanism will be understood. An understanding of 
addi t ive  motion and agglomeration w i l l  a l s o  be use- 
f u l  i n  determining the  ve loc i ty  and thermal lag of 
t h e  additives i n  passing through t h e  nozzle, thereby 
influencing engine performance.7~8 

Phenomena such as addi t ive  motion and ag- 

This study i s  concerned with addi t ive  behavior 
c lose  t o  the  burning propellant surface and an at- 
tempt a t  an understanding of addi t ive  agglomeration 
is presented herein. Small strands of 
polybutadiene-acrylic-acid - ammonium-perchlorate - 
aluminum (PBAA-AP-Al) propellants were used t h a t  
have two compositions, predominantly coarse oxidizer 
and predominantly f i n e  oxidizer s ize .  
was trapped close t o  the  burning surface and s i z e  
d i s t r ibu t ions  obtained over t he  pressure range from 
atmospheric t o  500 ps i .  
formed with an erosive type of flow across the  t e s t  
strand. 
modify an agglomeration c r i t e r ion ,  and the  s i z e  
d i s t r ibu t ions  were compared with other published 
data. 

The alumina 

Several  t e s t s  were per- 

The experimental r e s u l t s  were used t o  

Apparatus and Procedure 

Propellants.  - PBAA-AP-A1 propellants of two 
types were used i n  t h i s  study. 
used a r e  given i n  t a b l e  1. 
blend of f i n e  (11-micron mean-weight diameter) and 
coarse (85-micron mean-weight diameter) c rys ta l s .  
The p a r t i c l e  s i z e  d i s t r ibu t ions  of t he  aluminum ad- 
d i t i v e  and oxidizers were obtained with a micromero- 
graph and a r e  given i n  f ig .  1. 

The compositions 
The oxidizer used was a 

Combustion Product Sample Collection. - The 
Propellant sample s i zes  were 1 /2  by 1/2 in.  and 
were 3/8-in. high. 
propellant,  and the experiments were performed a t  
70° f53 F. The so l id  combustion pro'ducts were 
co l lec ted  on Pyrex s l ides  located 1/4 t o  1 /2  in. 
above the  burning surface. The apparatus employed 
w a s  s i m i l a r  t o  t h a t  used previously9 and is shown 
schematically i n  f ig .  2(a). The s ta t ionary  s l ides  
were exposed when the  s l o t  passed between the  pro- 
pe l l an t  and the  Pyrex s l ide .  The concentration of 
products co l lec ted  f o r  a given propellant depended 
on the  s l o t  s i z e  and p l a t e  speed and was determined 
by co l lec t ing  a su i tab le  number of samples a t  vary- 

s l o t  s i z e  a i i C  by inspect<ng the 
r e s u l t s  under a microscope. 
used t o  a r r ive  a t  a representa t ive  sample a f t e r  
s i z ing  several  d i s t r ibu t ions .  The exposure time was  
decreased with increasing pressure, and a t  atmo- 
spheric pressure it was approximately 1/20 sec. 
Combustion samples were co l lec ted  f o r  both propel- 

No inh ib i to r  was used on the  
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Visual judgment was 
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l a n t  compositions from atmospheric pressure t o  
500 ps i .  
exception of several  t e s t s  t h a t  w e r e  performed i n  
the  open atmosphere. 

The burning occurred i n  nitrogen with the  

The co l lec t ion  system was enclosed i n  a pres- 
sure vesse l  (6  in. i n  diameter by 7 in.  high), and 
the  s l i d ing  metal p l a t e  was pneumatically driven 
(p is ton  arrangement) through a solenoid-operated 
valve. The valve was manually operated subsequent 
t o  the  i n i t i a t i o n  of burning. Ign i t ion  was accom- 
plished with a 10-v hot-wire system. 
tank was connected t o  the  combustion chamber i n  
order t o  maintain constant pressure burning. 
lowing combustion, the pressure was released slowly 
(1000 t o  0 ps i  i n  approx. 2 min) i n  order not t o  
d is turb  t h e  collected combustion products. This 
vent time was  subsequently lengthened t o  approxi- 
mately 20 min (500 t o  0 ps i ) .  

An accumulator 

Fol- 

Ek-osive flow. - For the  case of end burning 
with cross flow, 3/4- by 3/4-in. D a n s i t e  blocks, 
1 in.  long were -d r i l l ed  (1/2-in.-diam. hole) and- 
f i l l e d  with the same propellant (but with no Al) as 
that under t e s t .  The experimental arrangement i s  
sham i n  f ig .  2(b).  The propellant i n  the  Wans i te  
w a s  ign i ted ,  and the  r e su l t i ng  gas jet, i n  turn,  
ign i ted  the  t e s t  strand. A 1-In. separation was 
used between the t w o  propellants.  The sample was 
taken a f t e r  the burning had propagated across the  
s t rand  surface. These tests were conducted i n  the  
open atmosphere. 

High-speed photography. - The combustion cham- 
ber contained su i t ab le  observation sections f o r  
photographing the  burning propel lan t  surface. 
object t o  image r a t i o  of un i ty  was used f o r  t he  
photographs (4000 f p s ) ,  which were taken a t  an angle 
of approximately 30° t o  t he  surface and over the  
pressure range from atmospheric t o  200 psi .  The 
photographs were taken with Double-X f i lm and 5 1 - X  
f i lm with a Wratten 47 f i l t e r ,  and in f r a red  f i l m  
with a Wratten 25 f i l t e r .  A nitrogen purge w a s  used 
around the  strand. 

An 

Size distribution. - The combustion, product 
samples were projected a t  a magnification of 500 on 
the  viewing p la te  of a metallurgical microscope and 
s ized  with the a i d  of a X6 eyepiece. 
of this system was  approximately 1 micron (p). 
minimum of 1000 p a r t i c l e s  was counted f o r  each pro- 
pe l l an t  type. With the  end-burning strands,  t he  
sample was analyzed a t  the  center of t he  Pyrex 
s l ide ,  whereas i n  the case of end burning with 
crossflow, the s i z e  d i s t r ibu t ion  was made along the  
s l i d e  i n  t h e  d i rec t ion  of the  flow. 

The reso lu t ion  
A 

Par t i c l e  motion. - Aluminum p a r t i c l e  displace- 
ment on t h e  burning propel lan t  surface was estimated 
by projecting the  fi lm a t  a magnification of 50 on 
a ru led  screen and by observing the  displacement 
fo r  a l a rge  number of par t ic les .  
ve loc i ty  w a s  then determined a t  a given pressure, 
using the  average p a r t i c l e  displacement and t h e  
fi lm speed. 

A p a r t i c l e  

Results and Discussion 

Pressure e f fec t  on agglomeration. - The com- 
bustion product s i z e  d i s t r ibu t ions  obtslned f o r  t he  
two types of propellants (predominantly coarse oxi- 
d izer  and predominantly f ine  oxidizer p ropenan t )  
a t  atmospheric pressure a re  given i n  f ig .  3, as 

well  as t h e  i n i t i a l  number d i s t r ibu t ion  of the  
aluminum, which was determined from t he  weight dis- 
t r i bu t ion  of f ig .  1. The coarse oxidizer propel- 
lant yielded pa r t i c l e s  t h a t  were s ign i f i can t ly  lar- 
ger  than the  i n i t i a l  aluminum additive,  whereas the  
f i n e  oxidizer mixture y ie lded  pa r t i c l e s  that were 
only s l i g h t l y  la rger  than the  i n i t i a l  s ize .  This 
e f f e c t  has been reported previouslyg,10 f o r  propel- 
l a n t  samples burned i n  the  open atmosphere. The 
present results a re  i n  subs t an t i a l  agreement with 
reference 9, although a g rea t e r  percentage of t he  
combustion products a r e  smaller i n  diameter with 
t h e  nitrogen environment. The percentage of t he  
t o t a l  number of pa r t i c l e s  t h a t  agglomerated w a s  ap- 
proximately equal although the  s i z e  d i s t r ibu t ion  
obtained i n  the  open atmosphere tests showed a more 
de f in i t e  break i n  the  d i s t r ibu t ion  than is  ind i -  
cated i n  f ig .  3. This break (change of slope) oc- 
curred near t he  crossover poin t  between the  i n i t i d  
aluminum d i s t r ibu t ion  and the  combustion product 
d i s t r ibu t ion .  The amount of agglomeration w a s  
taken as the  value corresponding t o  the poin t  where 
t h e  combustion product d i s t r i b u t i o n  crosses t h e  
i n i t i a l  aluminum dis t r ibu t ion .  The computed in- 
crease i n  aluminum diameter, i f  it i s  assumed t h a t  
t h e  aluminum burns completely t o  A1203 without 
forming a hollow sphere, i s  appraximately 20 per- 
cent, whereas agglomerated p a r t i c l e s  are aa high as 
2500 percent of the  o r ig ina l  mean s ize .  

The percent of agglomerated addi t ives  was 
found t o  be dependent on the  chamber venting time 
a f t e r  burning, as indicated i n  f ig .  4 f o r  a cam- 
bcs t ion  pressure of 500 ps i .  
vent t i m e s  were required i n  order t o  ensure t h a t  
t h e  co l lec ted  sample was not disturbed. 
t h e  e f f e c t  of f a s t  venting time w a s  t o  remove t h e  
smaller products from the  combustion sample. The 
percent agglomeration showed t h a t  a maximum of 
16 min was required with the  t e s t  apparatus t o  
reach an equilibrium s i z e  d i s t r ibu t ion  ( f i g .  5). 
Subsequent combustion samples were co l lec ted  f o r  
venting times of approximately 20 min. 

Suf f i c i en t ly  long 

Evidently, 

The r e su l t i ng  s i z e  d i s t r ibu t ions  of t h e  
alumina a t  50, 100, 250, and 500 p s i  a r e  given i n  
f ig s .  6, 7, 8, and 9, respectively.  The amount of 
agglomeration decreased with increasing pressure as 
shown i n  the  log-log p lo t  i n  fig.  10. A s t r a i g h t  
l i n e  with a negative slope of 0.3 appeared t o  f i t  
t h e  da ta  reasonably well. 

Photographic r e su l t s .  - High-speed photographs 
of t h e  coarse oxidizer propel lan t  obtained i n  t h i s  
study revealed t h a t  t he  average addi t ive  p a r t i c l e  
ve loc i ty  decreased with increasing pressure between 
atmospheric pressure and 50 ps i ,  as sham i n  
f i g .  11. Above this pressure,  soot  formation ob- 
scured t h e  burning propel lan t  surface. An attempt 
t o  use high oxidizer propel lan ts  was unsuccessflil, 
and it  w a s  not poss ib le  t o  obtain usefu l  photo- 
graphic data with se l ec t ive  f i l t e r s  and f i lm  e d -  
s ions  above 50 psia.  

Photographs of t h e  f i n e  oxidizer propellant,  
which were obtained only a t  atmospheric pressure,  
revealed some p a r t i c l e  motion although agglomera- 
t i o n  w a s  not evident. The mechanism by which the  
p a r t i c l e s  a r e  perturbed i s  not  understood. 

Agglomeration c r i t e r i a .  - A model f o r  t h e  
aan lmera t ion  mechanism was  presented i n  r e fe r -  -- 
ence 9. The c r i t e r i a  f o r  t h e  occurrence of agglom- 
e ra t ion  u t i l i z e d  th ree  cha rac t e r i s t i c  times in -  

- 
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volved i n  the  metall ic-solid burning process. Ag- 
glomeration was assumed t o  be a surface phenomenon 
caused by the  co l l i s ion  of molten, unoxidized par- 
t i c l e s  of metal. 

It w a s  postulated t h a t  (1) t h e  pa r t i c l e s  re- 
qu i re  a f i n i t e  period of t i m e  t o  burn 
pa r t i c l e s  have a given residence time on the  sur- 
face TR, and (3) a f i n i t e  time is  required f o r  t h e  
pa r t i c l e s  t o  agglomerate T& ( A l l  symbols a r e  de- 
f ined  i n  t h e  Appendix.) 
p a r t i c l e  i s  l e s s  than the  agglomeration time, the 
molten m e t a l  burns t o  i t s  oxide. Since the  melting 
temperature of t he  meta l l ic  oxides generally exceeds 
propellant surface temperature, agglomeration w i l l  
not occur. I f ,  however, t h e  burning time exceeds 
the  agglomeration time, the  molten addi t ive  has an 
opportunity t o  agglomerate before it burns and t o  
form an oxide she l l .  This model l e d  t o  a twofold 
condition t h a t  had t o  be f u l f i l l e d  fo r  agglomeration 
t o  occur, namely, (1) t h e  m e t a l  residence time must 
exceed the  agglomeration t i m e ,  and (2) t he  agglm- 
era t ion  time m u s t  be l e s s  than the  burning time. 
Employing severa l  assumptions regarding the  nature 
of t he  burning of addi t ive  p a r t i c l e s  (wherein the  
burning of the aluminum is  l imi ted  by the  d i f fus ion  
of oxidizing vapors through the  binder gases t o  t h e  
addi t ive  s i t e ) ,  p a r t i c l e  motion and p a r t i c l e  r e s i -  
dence t i m e ,  r e su l t ed  i n  the  following expression 
f o r  the  c r i t e r i a  fo r  agglomeration: 

TB, (2)  t h e  

I f  t he  time t o  burn the  

where K was assumed given by the  expression 

v = K r  

t h a t  is, t h e  perturbation ve loc i ty  of t he  addi t ive  
pa r t i c l e s ,  normal t o  the  main gas flow, was assumed 
t o  be proportional t o  the  propel lan t  burning rate.  

Modification of agglomeration c r i t e r i a .  - The 
p a r t i c l e  ve loc i ty  data of f ig .  11 leads t o  the  
following r e l a t i o n  between addi t ive  perturbation 
ve loc i ty  and pressure: 

K v = -  
$1 

In  addition, t h e  mean-oxidizer-particle - additive- 
p a r t i c l e  spacing based on t h e  model of reference 9 
i s  (/Z r a the r  than 5 .  Subs t i tu t ion  of expression 
(3) and E/2 i n t o  the  two r a t i o s  discussed i n  
Agglomeration C r i t e r i a  
ca t ion  of expressions 8) and (2)  : 

i e l d s  the  following modifi- 

(4) 

Ekpressions (4) and (5) may be used t o  determine the  
va lue  of t h e  aluminum p a r t i c l e s  t h a t  are necessary 
i n  order f o r  agglomeration t o  occur. 
diameter of 20 microns w a s  determined previously9 

A c r i t i c a l  

f o r  t he  propellants used herein by use of expres- 
s ion  (1). m r e s s i o n  (4) ind ica tes  t h a t  t he  c r i t i -  
c a l  aluminum s i z e  f o r  agglomeration increases with 
the  combustion pressure. Subs t i tu t ion  of a log  re- 
l a t i o n  f o r  the  burning rate, namely, 

r = cpn2 (6) 

y ie lds  

( 7 )  

For t h e  predominantly coarse oxidizer propellant 
used i n  t h i s  study, n1 = 0.32 and n2 = 0.34; hence, 

Bn d3 
64 -> 1 

where B = nK/4C. Subs t i tu t ion  of t he  numerical 
value of B, where X = 0.34 from fig.  11 and 
C = 0.032 (when r is i n  in./sec and i s  p i n  
ps ia )  and 
y ie lded  a c r i t i c a l  aluminum value of 3.5 p a t  
atmospheric pressure. 

n a  (9 percent concentration by weight) 

mumerical evaluation of expression (5) w a s  
made from the  i n t e r p a r t i c l e  spacing , t he  d i f fus ion  
coe f f i c i en t  based on the r e l a t ion  
(0.35 cmz/sec), and Co was taken as oxygen den- 
s i t y  at 1200° K. 
was assumed t o  be independent of pressure. 

@/2/p 

Propellant surface temperature 

The var ia t ions  of addi t ive  diameter with pres- 
sure  as ca lcu la ted  from expressions (4) and (5) s e t  
equal t o  unity, a re  shown i n  f ig .  12. The experi- 
mental data,  taken from the  crossover points of the  
d i s t r ibu t ions  i n  f igs .  3, 6, 7, 8 and 9, a r e  shown 
f o r  comparison with the  calculated values. Since 
t h e  complete combustion of the  aluminum t o  i t s  
oxide occurs with a 20-percent increase i n  diameter, 
t he  experimental da ta  were correspondingly reauced 
20 percent. It i s  noted t h a t  t he  values determined 
by expression (5) are the c r i t i c a l  aluminum di -  
ameters necessary f o r  the occurrence of sgglomera- 
'cion i n  t h i s  pa r t i cu la r  propellant above a pressure 
of approximately 150 psia. Expression (4) y i e lds  a 
lower c r i t i c a l  diameter below t h i s  pressure. The 
s lope  of t h e  calculated da ta  appears t o  correspond 
reasonably well  with tha t  of the  experimental data,  
although the  l e v e l  of the experimental da ta  i s  
higher than the  calculated level.  A reasonable 
explanation f o r  t h i s  difference i n  l eve l  l i e s  i n  
the  f a c t  t h a t  an overa l l  "diameter" or s i z e  of the  
agglomerate w a s  measured ra ther  than the  s i z e  of 
t he  individual pa r t i c l e s  i n  the  agglomerated mass. 
The experimental da ta  p lo t ted  i n  f ig .  12, therefore,  
represent  the  s i z e  of a "par t ic le"  whose components 
include p a r t i c l e s  having diameters equal t o  or  
g rea t e r  than t h e  c r i t i c a l  value. In addition, i f  
t he  burning of the  addi t ive  occurs i n  such a manner 
as t o  form hollow spheres, the  p a r t i c l e  diameters 
may be increased appreciably, and the  experimen- 
tally measured diameter may grea t ly  exceed the  
o r ig ina l  s ize .  This behavior of t he  addi t ive  could 
account f o r  t h e  s ize  difference between the  calcu- 
l a t e d  and experimental values of t he  c r i t i c a l  alum- 
inum s ize .  

The s m a l l  difference i n  slope between t h e  ex- 
perimental  and calculated curves can be explained 
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by the  f a c t  tha t  the  t o t a l  number of addi t ive  par- 
t i c l e s  whose diameter is equal t o  or grea te r  than 
the  c r i t i c a l  value decreases with increasing c r i t i -  
c a l  s i z e  (viz. increasing pressure).  This, natu- 
rally, is due t o  the  f a c t  t h a t  t he  addi t ive  has a 
s i z e  d is t r ibu t ion  ( f ig .  1). Hence, at high pres- 
sures the  concentration of addi t ive  p a r t i c l e s  equal 
t o  or grea ter  than the  c r i t i c a l  s i z e  required f o r  
agglomeration is l e s s  than the  number ava i lab le  a t  
a lower pressure. One would expect, therefore,  
t he  smaller slope shown by the  experimental data. 

In view of l imi ted  photographic da ta  on the  
f i n e  oxidizer propellant,  it was assumed t h a t  ad- 
d i t i v e  motion behavior with pressure w a s  given by 
expression (3) with t h e  same pressure exponent n 
and in te rcept  K. The propellant surface tempera- 
t u re  w a s  assumed equal t o  that of the  coarse oxidi- 
zer propellant as well as the  pressure exponent on 
the  burning rate.  The ca lcu la ted  var ia t ions  of 
c r i t i c a l  aluminum diameter with pressure a re  shown 
i n  f ig .  13. The calculated values a re  s l i g h t l y  
higher than those obtained f o r  the  coarse oxidizer 
propel lan t .  Expression (5) y ie lds  the  c r i t i c a l  
value above ZOO psia,  whereas expression (4) y ie lds  
lower values below t h a t  pressure. The experimental 
da ta  do not appear t o  depend on combustion pressure 
f o r  t h i s  propellant. The most l i k e l y  explanation 
appears t o  be t h a t  t he  addi t ive  motion on the  f i n e  
oxidizer surface is not given cor rec t ly  by expres- 
s ion  ( 3 ) .  
t h i s  re la t ion .  

Further data a re  required t o  e s t ab l i sh  

Li te ra ture  data. - The data of reference 11 
show the  percentage of addi t ive  pa r t i c l e s  i n  a t h i n  
zone above the propellant surface with diameters i n  
the  same range as the or ig ina l  addi t ive  s izes .  The 
percentage of pa r t i c l e s  with diameters grea te r  than 
the  o r ig ina l  pa r t i c l e  s i z e  is highest a t  the  low 
pressures and high aluminum concentrations i n  the 
propellants.  The authors of reference 11 concluded 
t h a t  t h i s  was an indication of the  amount of ag- 
glomeration occmring near the propellant surface. 
These observations a re  consistent with the  r e s u l t s  
of the  present study. 
t o  agglomerate decreases with increasing pressure, 
with decreasing aluminum concentration, and with 
decreasing aluminum s i ze .  
as well as the da ta  presented i n  t h i s  repor t  suggest 
t h a t  t he  amount of agglomeration may not be pro- 
por t iona l  t o  p-" a t  higher pressures (250 p s i ) .  

The tendency f o r  additives 

The da ta  of reference ll 

Volume mean diameter as function of pressure. - 
During the  rapid acceleration t h a t  takes place i n  
the  th roa t  of a rocket engine u t i l i z i n g  propellants 
with metal additives, ve loc i ty  and thermal lags  de- 
velop between the  additives and the  gas stream. In  
determining the thrust loss ,  it i s  necessary t o  
know the  s ize  d is t r ibu t ion  of the  additive,  which, 
i n  turn,  requires s iz ing  a la rge  number of p a r t i -  
c l e s  over the en t i r e  s i z e  range present. I n  view 
of the  wide s ize  range t h a t  may occur from s o l i d  
propellant burning, t h i s  task  becomes somewhat 
d i f f i c u l t .  
which represents a more important parameter than 
the  number mean fo r  t h rus t  losses,  it is important 
t o  include a l l  t he  la rge  par t ic les ,  s ince  they add 
up t o  a considerable amount of the  weight present 
i n  the system. Figs. 14 and 15 show both the  num- 
ber and volume s i z e  d is t r ibu t ions  of the  combustion 
rroducts a t  250 and 500 psi .  In both cases, 90 per- 
cent of t he  weight is found t o  be contained i n  
2 percent of the  t o t a l  number of pa r t i c l e s .  
l a rge  agglomerates, therefore,  a r e  extremely impor- 

In  determining the  weight d i s t r ibu t ion ,  

The 

t a n t  i n  determining a m e a n  weight diameter. Fig. 16 
shows t h a t  t he  mean volume diameter decreases sig- 
n i f i can t ly  with increasing combustion pressure. 

previously,E2 which l e d  t o  t h e  conclusion that 
higher rocket e f f ic iency  was obtainable with low 
pressure operation. In order t o  understand t h i s  
discrepancy, it i s  necessary t o  consider t he  exper- 
iments of reference 1 2  and the  present work i n  some 
de ta i l .  

The op o s i t e  pressure behavior has been noted 

The propellants used i n  reference 1 2  and t h e  
present study were not i den t i ca l  (var ia t ions  
ex is ted  i n  aluminum concentration, p a r t i c l e  s izes ,  
and binder type). I n  addition, t he  data of r e fe r -  
ence 1 2  was obtained from small rocket f i r i ngs  
(both with and without a nozzle) ins ide  a la rge  
tank, and subsequently co l lec t ing  the  combustion 
deposits from the  tank w a l l s  and s iz ing  the  combus- 
t i o n  products with an e lec t ron  microscope. 
though some previous evidence ex is t s  t h a t  the  s i z e  
d is t r ibu t ions  from s t rand  burning a r e  not com ar- 
ab le  t o  those from rocket engine combustion,lg the  
da ta  were not conclusive. 
of reference 12 and t h a t  of t he  present study were 
compared by p lo t t i ng  the  normalized number of par- 
t i c l e s  of a given s i z e  aga ins t  the  diameter 
( f i g .  17). The data of reference 1 2  appear t o  ap- 
proach a peak but do not extend over a wide s i z e  
range. The da ta  of t he  present study, on the  
other hand, revea l  t h a t  the  p a r t i c l e  count, d id  not 
reach a peak but  did include the  la rger  end of t he  
d is t r ibu t ion .  The comparison a l so  revealed t h a t  
both the  s i ze  d is t r ibu t ions  were obtained from com- 
parable samples having a number median of 0.5 m i -  
crons and a mass median of approximately 80 microns. 

Al- 

Therefore, both the  da t a  

The data of reference 1 2  were obtained using 
an e lec t ron  microscope and s iz ing  a l l  pa r t i c l e s  
l a rge r  than 0.1 microns. 
t he  smaller end of the  d i s t r ibu t ion  curve as well as 
including all of the  combustion products formed. 
The pa r t i c l e s  were counted as individual pa r t i c l e s  
regardless of whether they overlapped or not. Pho- 
tographs from reference 1 2  show some p a r t i c l e  
groupings which, i f  t r ea t ed  as an agglomerate of 
pa r t i c l e s ,  a r e  s ign i f i can t ly  la rger  i n  s i z e  than 
the  maximum reported. Reference 12 shows t h a t  
90 percent of t h e  mass is contained i n  20 percent 
of t he  p a r t i c l e s  at  500 p s i  and i n  30 percent of 
t h e  pa r t i c l e s  a t  277 ps i .  These values could be 
s ign i f i can t ly  influenced by the  presence of any 
addi t iona l  l a rge r  pa r t i c l e s .  Chemical analysis Of 
t h e  combustion products i n  reference 1 2  revealed 
t h e  presence of f ig03  with small amounts of alumi- 
num and iron. 

The conclusion reached from the  foregoing d is -  

This would tend t o  favor 

cussion is t h a t  the da ta  of t he  study of r e fe r -  
ence 1 2  would tend t o  be cor rec t  on a number bas i s  
r a the r  than a weight basis.  In  the  present study, 
t h e  da ta  were more nearly on a mass basis.  
may be seen from the  following discussion. 

This 

Pr ior  t o  obtaining the  s i z e  d i s t r ibu t ion  of 
t h e  burned addi t ive  i n  the  present study, non- 
aluminized combustion product samples were obtained 
a t  various pressures and subsequently t r ea t ed  f o r  
1 hr i n  an oxygen stream a t  875O K t o  remove any 
carbon present. Sample inspection up t o  a magni- 
f i c a t i o n  of 850 revealed a l a rge  number of sub- 
micron p a r t i c l e s  whose shape was l e s s  regular than 
t h e  burned addi t ive  pa r t i c l e s .  On the  bas i s  of 
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spectrographic analysis and t h e  co l lec t ion  tech- 
niques involved, it was concluded t h a t  these par- 
t i c l e s  were contaminants (Ca,  Cu, Fe, Mg, Na, P, 
Si, W) and that the  mixing process and subsequent 
handling of the  propellants were the  chief sources 
of contamination. 
d i s t r ibu t ion  of t he  aluminized samples, v i sua l  
discrimination w a s  used i n  determining whether t he  
p a r t i c l e  was aluminum i n  nature or not. In prac- 
t i ce ,  therefore,  all par t i c l e s  s l i g h t l y  l e s s  than 
1 p and above were counted. All p a r t i c l e s  1.5 p 
i n  diameter or less were grouped together i n  pre- 
senting t h e  s i z e  d is t r ibu t ions .  
t i o n  pa t te rns  obtained from the  combustion products 
of t he  aluminized propellants revealed only the  
presence of aluminum oxide. Thus, the s i z e  distri- 
bution would tend t o  be cor rec t  on a weight bas i s  
ra ther  than on a number basis.  

In  obtaining t h e  p r o d x t  s i ze  

Electron d i f f rac-  

The mean number diameter f o r  t he  data of re f -  
erence 12 i s  0.8 p and f o r  t h e  present study is  
1.6 p , both showing no dependence'-on pressure. 

End burning with crossflow. - The r e s u l t s  of 
burning the  aluminized t e s t  s t rands  with a cross- 
flow of hot combustion gases revealed on an almost 
twofold increase i n  the  amount of addi t ive  agglom- 
era t ion  with the coarse oxidizer propellant 
( f ig .  18).  I n  addition, t he  f i n e  oxidizer propel- 
l a n t  showed a s ign i f i can t  amount of agglomeration 
(2  percent).  
seen t h a t  increasing K/rpn or v / r j  that is, the 
r a t i o  of the  p a r t i c l e  perturbation ve loc i ty  t o  t h e  
propel lan t  burning r a t e  decreases the  addi t ive  s i z e  
required f o r  agglomeration. 
ve loc i ty  used i n  these tests (-25 f t / sec)  , t h e  pro- 
pe l l an t  burning r a t e  would not be s ign i f i can t ly  
changed. 
did penet ra te  su f f i c i en t ly  c lose  t o  t h e  surface t o  
a f f e c t  p a r t i c l e  motion, it could influence t h e  
amount of agglomeration. A high-speed f i lm  of t he  
burning d i d  not appear t o  show any s izeable  in- 
creases i n  p a r t i c l e  motion. The pa r t i c l e s  m o s t  
l i k e l y  t o  be affected,  however, may not have been 
resolved. 
oxidizer propellant i s  p lo t t ed  i n  f ig .  10 f o r  com- 
parison with the  case of end burning only. 

Referring t o  expression (41, it i s  

A t  t h e  low crossflow 

I f  t he  flow over the  propellant surface 

The percent agglomeration f o r  t h e  coarse 

Sununary of Results 

Alumina s i ze  d i s t r ibu t ions  were obtained for 
both a coarse and a f ine  oxidizer composite propel- 
l a n t  burning i n  a nitrogen atmosphere over the 
pressure range from atmospheric t o  500 psi. The 
amount of addi t ive  agglomeration w a s  found t o  be 
s ign i f i can t ly  higher f o r  the  coarse oxidizer pro- 
pe l lan t .  
with increasing pressure t o  the  0.3 power over t h e  
range from atmospheric pressure t o  250 psi .  

The amount of agglomeration decreased 

High-speed photographs of t he  burning propel- 
l a n t  sur face  revealed that the  addi t ives  moved on 
the  surface,  with the  average p a r t i c l e  ve loc i ty  
decreasing with pressure t o  approximately t h e  0.3 
power over t he  pressure range f r o m  atmospheric t o  
50 ps i .  
t i c l e  ve loc i ty  and prpqqiire was IISPA to modify an 
agglomeration c r i t e r ion  presented previously. 
h ra lua t ion  of the  c r i t i c a l  aluminum diameter re -  
quired fo r  agglomeration ind ica ted  that both pro- 
p e l l a n t  types used i n  t h i s  study should experience 
some agglomeration over t he  pressure range studied. 
The aluminum s i z e  required f o r  agglomeration was 

The empirical r e l a t ionsh ip  between par- 

found t o  increase with increasing pressure, varying 
from 3.5 p a t  atmospheric pressure t o  6.5 p a t  
400 p s i  f o r  t he  coarse oxidizer propellant. The 
experiment findings of the c r i t i c a l  aluminum di -  
ameter required fo r  agglomeration were i n  reason- 
ab le  agreement with the  calculated data. 

The volume mean diameter of t he  alumina w a s  
found t o  decrease with increasing pressure, and the  
da ta  were compared with t h a t  i n  the  l i t e r a tu re .  

Propellant strands burned under conditions of 
erosive flow revealed an almost twofold increase in 
agglomeration over t h e  nonerosive tests. 

Appendix - Symbols 

B constant, fiK/4C 

C burning r a t e  constant 

Co concentration of oxidizer vapors 

Do,f d i f fus ion  coef f ic len t  of oxidizer vapors 

d, 

K 

n 

"a 

P 

r 

v 

5 

Pa 

TA 

TB 

'R 

through fue l  vapors 

diameter of addi t ive  p a r t i c l e  

constant 

pressure exponent 

number of addi t ive  pa r t i c l e s  per un i t  volume 

combustion pressure 

l i nea r  regression rate of s o l i d  

perturbation ve loc i ty  of addi t ive  pa r t i c l e s  

i n t e r p a r t i c l e  oxidizer spacing 

density of addi t ive  p a r t i c l e  

charac te r i s t ic  agglomeration time, 4 
finadzv 

cha rac t e r i s t i c  burning (reaction) 
Pag$ 

=Do, fC0 
time - 

cha rac t e r i s t i c  residence time, Q r  
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Coarse 

Polybutadienc ac ry l i c  ac id  (epoxy a 

crosslinked copolymer of butadiene 
and a carboxylic monomer). 
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